Rational Approximation on the Nonnegative Integers

A. R. Reddy
School of Mathematics \& CIS, University of Hyderabad, Hyderahad 500134, India, and Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
Communicated by Oved Shisha

Received July 1, 1977; Revised April 1, 1985

Recently we [1] have proved

Theorem 1. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$ be an entire function. We denote by N the set of all nonnegative integers. Then, for every integer $n \geqslant 2$, there exists a polynomial $P(x)$ of degree at most $2 n$ such that

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{1}{P(x)}\right\|_{L_{\infty}(N)} \leqslant \frac{2}{f(2 n)} . \tag{1}
\end{equation*}
$$

We now prove

Theorem 2. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$, be an entire function of order $\rho(0<\rho<\infty)$, type τ, and lower type $\omega(0<\omega \leqslant \tau<\infty)$. Let $0<\varepsilon<1$. There exists an integer $k>1$ such that, for all integers some $n \geqslant n_{0}(\varepsilon) \geqslant 0$, if $P(x), Q(x)$ are real polynomials of degree $\leqslant n$ with nonnegative coefficients $(Q(0)>0)$, then

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}(N)} \geqslant 4^{-1} f\left(n^{1 / \rho}\right)^{(-v(1+\varepsilon)) / \omega(1-\varepsilon)}(2 k)^{-n} . \tag{2}
\end{equation*}
$$

TheOrfm 3. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$ be an entire function of order $\rho(0<\rho<\infty)$, type τ, and lower type $\omega(0<\omega \leqslant \tau<\infty)$. Given $\varepsilon, 0<\varepsilon<1$, there exists a positive integer k such that if n is an integer \geqslant some $n_{0}(\varepsilon) \geqslant 1$ and if $P(x), Q(x)$ are real polynomials of degree $\leqslant 2 n(Q(0) \neq 0)$, then

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}(N)} \geqslant \frac{n^{-2}(16)^{-2 n}(4 k+2)^{-4 n}}{\left.4[f(n)]^{(\tau)}(1+\varepsilon)\right) /(\omega(1-\varepsilon))} . \tag{3}
\end{equation*}
$$

We need the following lemmas.

Lemma 1. Let $P(x)$ be a polynomial of degree at most $2 n(n \geqslant 1)$ satisfying the assumption that $|P(k)|$ is bounded by 1 , for $k=a, a+1$, $a+2, \ldots, a+n, \ldots, a+2 n, a$ being a nonnegative real: Then

$$
\begin{equation*}
\max _{[a, a+2 n]}|P(x)| \leqslant n(16)^{n} . \tag{4}
\end{equation*}
$$

This lemma is known for $a=0$ [1, Lemma 3]. The proof for $a>0$ is very similar and omitted.

Lemma 2 [3, p. 68]. Let $P(x)$ be a real polynomial of degree at most n $(\geqslant 0) .|P(x)|$ is bounded by M on an interval $[a, b] \subset[c, d]$, then, throughout $[c, d]$ we have

$$
\begin{equation*}
|P(x)| \leqslant M\left|T_{n}\left(\frac{2(d-c)}{(b-a)}-1\right)\right| \tag{5}
\end{equation*}
$$

where

$$
2 T_{n}(x)=\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}
$$

Proof of Theorem 2. For $r \geqslant 0, M(r)=\operatorname{Max}_{|z|=r}|f(z)|$. Then, by assumption,

$$
\begin{equation*}
\lim _{\substack{\text { inf } \\ r \rightarrow \infty}}^{\sup } \frac{\log M(r)}{r^{\rho}}=\frac{\tau}{\omega} \tag{6}
\end{equation*}
$$

Let $n \geqslant 1$ be an integer and let $P(x), Q(x)$ be real polynomials of degree $\leqslant n$ with nonnegative coefficients, $Q(0)>0$. Set

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}(N)}=\delta \tag{7}
\end{equation*}
$$

For n large, we choose a positive integer m such that

$$
\begin{equation*}
m^{\rho} \leqslant n<2 m^{\rho} \tag{8}
\end{equation*}
$$

Further, we can find an integer $k>1$ such that

$$
\begin{equation*}
1+2 \log (2 k)+\tau(1+\varepsilon)<\omega(1-\varepsilon) k^{\rho} 2^{\rho} \tag{9}
\end{equation*}
$$

We require n to be so large that, from (6) and (7),

$$
\begin{equation*}
\frac{P(m)}{Q(m)} \geqslant \frac{1}{f(m)}-\delta \geqslant \exp \left(-m^{\rho} \tau(1+\varepsilon)\right)-\delta \tag{10}
\end{equation*}
$$

On the other hand, we get from (6) and (7), observing the fact that $P(x)$ and $Q(x)$ have only nonnegative real coefficients,

$$
\begin{equation*}
\frac{P(m)}{(2 k)^{n} Q(m)} \leqslant \frac{P(2 m k)}{Q(2 m k)} \leqslant \frac{1}{f(2 m k)}+\delta \leqslant \exp \left(-2^{\rho} m^{\rho} k^{\rho} \omega(1-\varepsilon)\right)+\delta \tag{11}
\end{equation*}
$$

From (8)-(11) we get, after some work, for all large n,

$$
\begin{equation*}
4 \delta(2 k)^{n} \geqslant \exp (-n \tau(1+\varepsilon)) \tag{12}
\end{equation*}
$$

From (12) we get, for all large n,

$$
\delta \geqslant(2 k)^{-n} 4^{-1} \exp (-n \tau(1+\varepsilon)) \geqslant 4^{-1}\left[f\left(n^{1 / \rho}\right)\right]^{(-\tau(1+\varepsilon)) /(\omega(1-\varepsilon))}(2 k)^{-n},
$$

establishing (2).
Remark. Let $f(z)$ satisfy the assumptions of the first sentence of Theorem 2. Then it has been established in [2] that

$$
\limsup _{n \rightarrow \infty}\left\|\frac{1}{f(x)}-\frac{1}{\sum_{k=0}^{n} a_{k} x^{k}}\right\|_{L_{\infty}[0, \infty)}^{1 / n} \leqslant \exp \left(\frac{-\omega}{e \rho \tau+\rho \omega}\right) .
$$

Proof of Theorem 3. Choose a positive integer k satisfying, for $n=0,1,2, \ldots$,

$$
\begin{equation*}
2 n^{2}(16)^{2 n}(4 k+2)^{4 n}<\exp \left\{[(k+1) n]^{\rho} \omega(1-\varepsilon)-(2 n)^{\rho} \tau(1+\varepsilon)\right\} \tag{13}
\end{equation*}
$$

Let $P(x), Q(x)(Q(0) \neq 0)$ be real polynomials of degree $\leqslant 2 n, n \geqslant 1$, and set

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}(N)}=\delta \tag{14}
\end{equation*}
$$

Now we normalize $Q(x)$ so that

$$
\begin{equation*}
\max _{x \in\{0,1,2, \ldots, 2 n\}}|Q(x)|=1 . \tag{15}
\end{equation*}
$$

By Lemma 1 with $a=0$, we get

$$
\begin{equation*}
\max _{[0,2 n]}|Q(x)| \leqslant n(16)^{n} \tag{16}
\end{equation*}
$$

By applying Lemma 2 to (16) over the interval $[0,2(k+1) n]$, we get

$$
\begin{equation*}
\max _{[0, z(k+1) n]}|Q(x)| \leqslant n(16)^{n}(4 k+2)^{2 n} \tag{17}
\end{equation*}
$$

From (15) it is obvious that there is an integer $j(0 \leqslant j \leqslant 2 n)$ for which

$$
\begin{equation*}
|Q(j)|=1 \tag{18}
\end{equation*}
$$

By (14),

$$
\begin{equation*}
|P(j)| \geqslant \frac{1}{f(j)}-\delta . \tag{19}
\end{equation*}
$$

We can find an $n_{0}=n_{0}(\varepsilon)$ so large such that for all $n \geqslant n_{0}(\varepsilon)$ we have on [0, 2n] from (19),

$$
\begin{equation*}
|P(j)| \geqslant \exp \left(-(2 n)^{\rho} \tau(1+\varepsilon)\right)-\delta \tag{20}
\end{equation*}
$$

On the other hand, we get from (14) on $[(k+1) n, 2(k+1) n]$,

$$
\begin{align*}
|P(x)| & \leqslant \max _{[0,2(k+1) n]}|Q(x)|\left(\frac{1}{f(x)}+\delta\right) \leqslant n(16)^{n}(4 k+2)^{2 n}\left(\frac{1}{f(x)}+\delta\right) \\
& \leqslant n(16)^{n}(4 k+2)^{2 n}\left(\exp \left\{-[(k+1) n)^{\rho} \omega(1-\varepsilon)\right\}+\delta\right) \tag{21}
\end{align*}
$$

Equation (21) is valid throughout $[(k+1) n, 2(k+1) n]$ and hence on $[2 k n, 2(k+1) n]$. By applying Lemma 1 to (21) over $[2 k n, 2(k+1) n]$, we get

$$
\begin{equation*}
\max _{[2 k n, 2(k+1) n]}|P(x)| \leqslant n^{2}(16)^{2 n}(4 k+2)^{2 n}\left\{\exp \left(-[(k+1) n]^{\rho} \omega(1-\varepsilon)\right)+\delta\right\} \tag{22}
\end{equation*}
$$

By applying Lemma 2 to (22) over the interval $[0,2(k+1) n]$, we get

$$
\begin{equation*}
\max _{[0,2(k+1) n]}|P(x)| \leqslant n^{2}(16)^{2 n}(4 k+2)^{4 n}\left\{\exp \left(-[(k+1) n]^{\rho} \omega(1-\varepsilon)\right)+\delta\right\} \tag{23}
\end{equation*}
$$

From (20) and (23) we have

$$
\begin{align*}
\exp (& \left.-(2 n)^{\rho} \tau(1+\varepsilon)\right)-\delta \\
& \leqslant n^{2}(16)^{2 n}(4 k+2)^{4 n}\left[\exp \left(-[(k+1) n]^{\rho} \omega(1-\varepsilon)\right)+\delta\right] \tag{24}
\end{align*}
$$

From (13) and (24), we get for all large n,

$$
\delta \geqslant \frac{\exp \left(-(2 n)^{\rho} \tau(1+\varepsilon)\right)}{4 n^{2}(16)^{2 n}(4 k+2)^{4 n}} \geqslant \frac{n^{-2}(16)^{-2 n}(4 k+2)^{-4 n}}{4[f(2 n)]^{(\tau(1+\varepsilon) /(\omega)(1-\varepsilon))}}
$$

proving the desired inequality.

References

1. P. Erdös, D. J. Newman, and A. R. Reddy, Approximations by rational functions, J. London Math. Soc. (2) 15 (1977), 319-328.
2. A. R. Repdy, A note on rational approximation, Bull. London Math. Soc. 8 (1976), 41-44.
3. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Macmillan Co., New York, 1963.
