Rational Approximation on the Nonnegative Integers

A. R. REDDY

School of Mathematics & CIS, University of Hyderabad, Hyderabad 500134, India, and Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

Communicated by Oved Shisha

Received July 1, 1977; Revised April 1, 1985

Recently we [1] have proved

THEOREM 1. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0$ $(k \ge 1)$ be an entire function. We denote by N the set of all nonnegative integers. Then, for every integer $n \ge 2$, there exists a polynomial P(x) of degree at most 2n such that

$$\left\| \frac{1}{f(x)} - \frac{1}{P(x)} \right\|_{L_{\infty}(N)} \le \frac{2}{f(2n)}.$$
 (1)

We now prove

THEOREM 2. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0$ $(k \ge 1)$, be an entire function of order ρ $(0 < \rho < \infty)$, type τ , and lower type ω $(0 < \omega \leqslant \tau < \infty)$. Let $0 < \varepsilon < 1$. There exists an integer k > 1 such that, for all integers some $n \ge n_0(\varepsilon) \ge 0$, if P(x), Q(x) are real polynomials of degree $\leqslant n$ with nonnegative coefficients (Q(0) > 0), then

$$\left\| \frac{1}{f(x)} - \frac{P(x)}{Q(x)} \right\|_{L_{\infty}(N)} \ge 4^{-1} f(n^{1/\rho})^{(-\tau(1+\varepsilon))/\omega(1-\varepsilon)} (2k)^{-n}. \tag{2}$$

THEOREM 3. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0$ $(k \ge 1)$ be an entire function of order ρ $(0 < \rho < \infty)$, type τ , and lower type ω $(0 < \omega \leqslant \tau < \infty)$. Given ε , $0 < \varepsilon < 1$, there exists a positive integer k such that if n is an integer \geqslant some $n_0(\varepsilon) \ge 1$ and if P(x), Q(x) are real polynomials of degree $\leqslant 2n$ $(Q(0) \ne 0)$, then

$$\left\| \frac{1}{f(x)} - \frac{P(x)}{Q(x)} \right\|_{L_{x}(V)} \ge \frac{n^{-2} (16)^{-2n} (4k+2)^{-4n}}{4\Gamma f(n) \Gamma^{(\tau(1+\varepsilon))/(\omega(1-\varepsilon))}}.$$
 (3)

We need the following lemmas.

266 A. R. REDDY

LEMMA 1. Let P(x) be a polynomial of degree at most 2n $(n \ge 1)$ satisfying the assumption that |P(k)| is bounded by 1, for k = a, a + 1, a + 2,..., a + n,..., a + 2n, a being a nonnegative real: Then

$$\max_{[a, a+2n]} |P(x)| \leqslant n(16)^n. \tag{4}$$

This lemma is known for a = 0 [1, Lemma 3]. The proof for a > 0 is very similar and omitted.

LEMMA 2 [3, p. 68]. Let P(x) be a real polynomial of degree at most $n \ge 0$. |P(x)| is bounded by M on an interval $[a, b] \subset [c, d]$, then, throughout [c, d] we have

$$|P(x)| \le M \left| T_n \left(\frac{2(d-c)}{(b-a)} - 1 \right) \right|, \tag{5}$$

where

$$2T_n(x) = (x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n.$$

Proof of Theorem 2. For $r \ge 0$, $M(r) = \text{Max}_{|Z|=r} |f(z)|$. Then, by assumption,

$$\lim_{\substack{r \to \infty \\ r \to \infty}} \frac{\log M(r)}{r^{\rho}} = \frac{\tau}{\omega}.$$
 (6)

Let $n \ge 1$ be an integer and let P(x), Q(x) be real polynomials of degree $\le n$ with nonnegative coefficients, Q(0) > 0. Set

$$\left\| \frac{1}{f(x)} - \frac{P(x)}{Q(x)} \right\|_{L_{\infty}(N)} = \delta. \tag{7}$$

For n large, we choose a positive integer m such that

$$m^{\rho} \leqslant n < 2m^{\rho}. \tag{8}$$

Further, we can find an integer k > 1 such that

$$1 + 2\log(2k) + \tau(1+\varepsilon) < \omega(1-\varepsilon) k^{\rho} 2^{\rho}. \tag{9}$$

We require n to be so large that, from (6) and (7),

$$\frac{P(m)}{Q(m)} \geqslant \frac{1}{f(m)} - \delta \geqslant \exp(-m^{\rho}\tau(1+\varepsilon)) - \delta. \tag{10}$$

On the other hand, we get from (6) and (7), observing the fact that P(x) and Q(x) have only nonnegative real coefficients,

$$\frac{P(m)}{(2k)^n Q(m)} \leqslant \frac{P(2mk)}{Q(2mk)} \leqslant \frac{1}{f(2mk)} + \delta \leqslant \exp(-2^{\rho} m^{\rho} k^{\rho} \omega (1-\varepsilon)) + \delta. \tag{11}$$

From (8)–(11) we get, after some work, for all large n,

$$4\delta(2k)^n \geqslant \exp(-n\tau(1+\varepsilon)). \tag{12}$$

From (12) we get, for all large n,

$$\delta \geqslant (2k)^{-n}4^{-1} \exp(-n\tau(1+\varepsilon)) \geqslant 4^{-1} [f(n^{1/\rho})]^{(-\tau(1+\varepsilon))/(\omega(1-\varepsilon))} (2k)^{-n},$$

establishing (2).

Remark. Let f(z) satisfy the assumptions of the first sentence of Theorem 2. Then it has been established in $\lceil 2 \rceil$ that

$$\limsup_{n\to\infty} \left\| \frac{1}{f(x)} - \frac{1}{\sum_{k=0}^{n} a_k x^k} \right\|_{L_{\infty}[0,\infty)}^{1/n} \le \exp\left(\frac{-\omega}{e\rho\tau + \rho\omega}\right).$$

Proof of Theorem 3. Choose a positive integer k satisfying, for n = 0, 1, 2, ...,

$$2n^{2}(16)^{2n}(4k+2)^{4n} < \exp\{[(k+1)\,n]^{\rho}\,\omega(1-\varepsilon) - (2n)^{\rho}\tau(1+\varepsilon)\}. \tag{13}$$

Let P(x), Q(x) ($Q(0) \neq 0$) be real polynomials of degree $\leq 2n$, $n \geq 1$, and set

$$\left\| \frac{1}{f(x)} - \frac{P(x)}{Q(x)} \right\|_{L_{\infty}(N)} = \delta. \tag{14}$$

Now we normalize Q(x) so that

$$\max_{x \in \{0,1,2,\dots,2n\}} |Q(x)| = 1.$$
 (15)

By Lemma 1 with a = 0, we get

$$\max_{[0, 2n]} |Q(x)| \le n(16)^n. \tag{16}$$

By applying Lemma 2 to (16) over the interval [0, 2(k+1)n], we get

$$\max_{[0, 2(k+1)n]} |Q(x)| \le n(16)^n (4k+2)^{2n}. \tag{17}$$

From (15) it is obvious that there is an integer j ($0 \le j \le 2n$) for which

$$|Q(j)| = 1. (18)$$

By (14),

$$|P(j)| \geqslant \frac{1}{f(j)} - \delta. \tag{19}$$

We can find an $n_0 = n_0(\varepsilon)$ so large such that for all $n \ge n_0(\varepsilon)$ we have on [0, 2n] from (19),

$$|P(j)| \geqslant \exp(-(2n)^{\rho} \tau(1+\varepsilon)) - \delta. \tag{20}$$

On the other hand, we get from (14) on $\lceil (k+1) n, 2(k+1) n \rceil$,

$$|P(x)| \le \max_{[0,2(k+1)n]} |Q(x)| \left(\frac{1}{f(x)} + \delta\right) \le n(16)^n (4k+2)^{2n} \left(\frac{1}{f(x)} + \delta\right)$$

$$\le n(16)^n (4k+2)^{2n} (\exp\{-[(k+1)n)^{\rho} \omega (1-\varepsilon)\} + \delta). \tag{21}$$

Equation (21) is valid throughout [(k+1)n, 2(k+1)n] and hence on [2kn, 2(k+1)n]. By applying Lemma 1 to (21) over [2kn, 2(k+1)n], we get

$$\max_{[2kn,2(k+1)n]} |P(x)| \le n^2 (16)^{2n} (4k+2)^{2n} \{ \exp(-[(k+1)n]^{\rho} \omega(1-\varepsilon)) + \delta \}.$$
(22)

By applying Lemma 2 to (22) over the interval [0, 2(k+1)n], we get

$$\max_{[0,2(k+1)n]} |P(x)| \le n^2 (16)^{2n} (4k+2)^{4n} \{ \exp(-[(k+1)n]^{\rho} \omega(1-\varepsilon)) + \delta \}.$$
(23)

From (20) and (23) we have

$$\exp(-(2n)^{\rho}\tau(1+\varepsilon)) - \delta$$

$$\leq n^{2}(16)^{2n}(4k+2)^{4n}\left[\exp(-\left[(k+1)n\right]^{\rho}\omega(1-\varepsilon)) + \delta\right]. \tag{24}$$

From (13) and (24), we get for all large n,

$$\delta \geqslant \frac{\exp(-(2n)^{\rho}\tau(1+\varepsilon))}{4n^{2}(16)^{2n}(4k+2)^{4n}} \geqslant \frac{n^{-2}(16)^{-2n}(4k+2)^{-4n}}{4[f(2n)]^{(\tau(1+\varepsilon))/(\omega(1-\varepsilon))}},$$

proving the desired inequality.

REFERENCES

- P. Erdös, D. J. Newman, and A. R. Reddy, Approximations by rational functions, J. London Math. Soc. (2) 15 (1977), 319-328.
- 2. A. R. REDDY, A note on rational approximation, Bull. London Math. Soc. 8 (1976), 41-44.
- 3. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Macmillan Co., New York, 1963.