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Recently we [1] have proved

THEOREM 1. Let f(z2)=3_ o aez", ap>0, a, 20 (k= 1) be an entire
Junction. We denote by N the set of all nonnegative integers. Then, for every
integer nz=2, there exists a polynomial P(x) of degree at most 2n such that
2

Lo
[ Loo(N) S(2n)

(1

/() P(x)

We now prove

THEOREM 2. Let f(z2)=XF o arz", ag>0, a, =0 (k> 1), be an entire
Junction of order p (0<p < 0}, type t, and lower type w (0 <w <7< 00)
Let 0 <e< 1. There exists an integer k> 1 such that, for all integers some
n=nye) =0, if P(x), Q(x) are real polynomials of degree <n with non-
negative coefficients (Q(0)>0), then

|7 gL,

THEOREM 3. Let f(z2) =35 o aiz’ ao>0, a, >0 (k>1) be an entire
Sunction of order p (0<p < o), type t, and lower type @ (0<w<Tt<00)
Given ¢, 0<e <1, there exists a positive integer k such that if n is an
integer = some ny(e)=1 and if P(x), Q(x) are real polynomials of
degree < 2n (Q(0}+#0), then

1 Px) nT216) "2 (4k + 2)
“f(x) QO(x) Lm(N)/4[f(n)](f(l+6))/(w(1‘a))‘

We need the following lemmas.

4wlf(nl/p)(~r(1+s))/m(1—fs) (zk)fn (2)
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(3)
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LemMMma 1. Let P(x) be a polynomial of degree at most 2n (n = 1) satisfy-
ing the assumption that |P(k)| is bounded by 1, for k=a, a+1,
a+2,.,a+n,..,a+2n, a being a nonnegative real: Then

max : |P(x)| <n(16)". (4)

[a,a+2n

This lemma is known for a=0 [1, Lemma 37]. The proof for a > 0 is very
similar and omitted.

LemMma 2 [3,p.68]. Let P(x) be a real polynomial of degree at most n
(=0). |P(x)| is bounded by M on an interval [a,b]<[c, d], then,

throughout [ ¢, d] we have
2(d—¢)
AC=

2T, (x)=(x+ /x> = 1)+ (x — /x?—1)".

Proof of Theorem 2. For r>=0, M(r)=Maxg_,|f(z)|. Then, by
assumption,

|P(x)| <M , (5)

where

$1rq SUP
hminf

r-—» o0

log M(r) =
—=

(6)

Let n=1 be an integer and let P(x), Q(x) be real polynomials of
degree < n with nonnegative coefficients, Q(0) > 0. Set

1 P(x
|75 5 ™ "
For n large, we choose a positive integer m such that
mf <n<2m”. (8)
Further, we can find an integer k> 1 such that
14+ 2log(2k) + (1 +&) <w(l—eg) k2%, 9)
We require # to be so large that, from (6) and (7),
Pm) o 1 5> exp(—mer(l+2)—o. (10)

0(m)~ f(m)
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On the other hand, we get from (6) and (7), observing the fact that P{x)
and Q(x) have only nonnegative real coefficients,

P(m) < P(2mk) <

Ok 00m) S Qmk) < Fami) T 0 SR 2m kel =2)) +o. (11)

From (8)-(11) we get, after some work, for all large n,

45(2k)" = exp(—nt(l +¢€)). (12)
From (12} we get, for all large n,
8= (2k) "4~ Lexp(—nt(l+e&)) =47 [ f(nVr)]lmr HeN@U=eD(gfy—n

establishing (2).

Remark. Let f(z) satisfy the assumptions of the first sentence of
Theorem 2. Then it has been established in [27 that

i/n PN
<exp (—-—~———>
Lo [0, 0c) epT + pw

Proof of Theorem 3. Choose a positive integer k satisfying, for
n=01,2,..,

1 _ 1
Sx)y 2% e akxk

lim sup

n-— o

2n*(16)(dk +2)* <exp{[(k+ 1) n]° o(1 —g)— (2n)’7(1 +&)}. (13)

Let P(x), Q(x) (Q(0) 5 0) be real polynomials of degree < 2n, n=> 1, and set

1 P(x)
_ =34, 14
Jf(x) O 2.em (14
Now we normalize Q(x) so that
max 1Q(x)=1. {15)
xe{0,1,2,.., 2n}
By Lemma 1 with a=0, we get
max [Q(x)| <r(16)" (16)
[0, 2]

By applying Lemma 2 to (16) over the interval [0, 2(k + 1}n], we get
max  [Q(x)| < n(16)"(4k + 2)*". (17)

[0, 2tk + 1) nl
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From (15) it is obvious that there is an integer j (0 <j < 2n) for which

U) =1 (18)
By (14),

PG| >j-,-(17.3—«5. (19)

We can find an n,=n,(e) so large such that for all n>ny(e) we have on
[0, 2n] from (19),

IP(/)| = exp(— (2n)?7(1 +¢)) —é. (20)

On the other hand, we get from (14) on [(k+ 1) n 2(k + 1) ],

[P(x)| < max |Q(x)| (7(17)+5> <n(16)"(4k +2)* </L+ 5)

[0,2(k + 1)n] (x)

<n(16)"(4k + 2)*(exp{ — [ (k + 1) n)?ex(1 — )} + 5). (21)

Equation (21) is valid throughout [(k+1)n, 2(k+1)n] and hence on
[2kn, 2(k+ 1) n]l. By applying Lemma 1 to (21) over [2kn, 2(k + 1) n], we
get

[an,rzrzl?f . |P(x)} <n*(16)™'(4k + 2)" {exp(— [(k + 1) n}?w(1 —¢)) + 6 }.
(22)
By applying Lemma 2 to (22) over the interval [0, 2(k+ 1) n], we get
[0)2].’(1’:?;)(1)"] | P(x)] <n*(16)*(4k + 2)*"{exp(— [(k + 1) n]°w(1 —¢)) + 5 }.
(23)
From (20) and (23) we have
exp(— (2n)Pe(1 +¢)) — &
<n? (16 (4k + )" [exp(—[(k+ ) nJ (1 —&))+ 8].  (24)

From (13) and (24), we get for all large n,

5 >exp(~—(2n)”r(1 +8))> n 3 (16) " (dk +2) %"
T an?(16)™(4k +2)* T 4[f(2n)] 0 D=0

proving the desired inequality.
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